首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464387篇
  免费   7534篇
  国内免费   2698篇
工业技术   474619篇
  2021年   3576篇
  2019年   3283篇
  2018年   5326篇
  2017年   5201篇
  2016年   5729篇
  2015年   4414篇
  2014年   7180篇
  2013年   20740篇
  2012年   12194篇
  2011年   16651篇
  2010年   13436篇
  2009年   14620篇
  2008年   15806篇
  2007年   16029篇
  2006年   14371篇
  2005年   12887篇
  2004年   11910篇
  2003年   11518篇
  2002年   10833篇
  2001年   11014篇
  2000年   10022篇
  1999年   10837篇
  1998年   27356篇
  1997年   19496篇
  1996年   14746篇
  1995年   11392篇
  1994年   10230篇
  1993年   10020篇
  1992年   7372篇
  1991年   7153篇
  1990年   6889篇
  1989年   6749篇
  1988年   6458篇
  1987年   5505篇
  1986年   5508篇
  1985年   6395篇
  1984年   5926篇
  1983年   5405篇
  1982年   4909篇
  1981年   5067篇
  1980年   4753篇
  1979年   4762篇
  1978年   4644篇
  1977年   5335篇
  1976年   7459篇
  1975年   4037篇
  1974年   3836篇
  1973年   3815篇
  1972年   3259篇
  1971年   2898篇
排序方式: 共有10000条查询结果,搜索用时 47 毫秒
1.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
2.
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.  相似文献   
3.
Spinal Cord Injury (SCI) is a debilitating condition characterized by damage to the spinal cord, resulting in loss of function, mobility, and sensation. Although increasingly prevalent in the US, no FDA-approved therapy exists due to the unfortunate complexity of the condition, and the difficulties of SCI may be furthered by the development of SCI-related complications, such as osteoporosis. SCI demonstrates two crucial stages for consideration: the primary stage and the secondary stage. While the primary stage is suggested to be immediate and irreversible, the secondary stage is proposed as a promising window of opportunity for therapeutic intervention. Enolase, a metabolic enzyme upregulated after SCI, performs non-glycolytic functions, promoting inflammatory events via extracellular degradative actions and increased production of inflammatory cytokines and chemokines. Neuron-specific enolase (NSE) serves as a biomarker of functional damage to neurons following SCI, and the inhibition of NSE has been demonstrated to reduce signs of secondary injury of SCI and to ameliorate dysfunction. This Viewpoint article involves enolase activation in the regulation of RANK-RANKL pathway and summarizes succinctly the mechanisms influencing osteoclast-mediated resorption of bone in SCI. Our laboratory proposes that inhibition of enolase activation may reduce SCI-induced inflammatory response and decrease osteoclast activity, limiting the chances of skeletal tissue loss in SCI.  相似文献   
4.
The calcium pump (sarco/endoplasmic reticulum Ca2+-ATPase, SERCA) plays a major role in calcium homeostasis in muscle cells by clearing cytosolic Ca2+ during muscle relaxation. Active Ca2+ transport by SERCA involves the structural transition from a low-Ca2+ affinity E2 state toward a high-Ca2+ affinity E1 state of the pump. This structural transition is accompanied by the countertransport of protons to stabilize the negative charge and maintain the structural integrity of the transport sites and partially compensate for the positive charges of the two Ca2+ ions passing through the membrane. X-ray crystallography studies have suggested that a hydrated pore located at the C-terminal domain of SERCA serves as a conduit for proton countertransport, but the existence and function of this pathway have not yet been fully characterized. We used atomistic simulations to demonstrate that in the protonated E2 state and the absence of initially bound water molecules, the C-terminal pore becomes hydrated in the nanosecond timescale. Hydration of the C-terminal pore is accompanied by the formation of water wires that connect the transport sites with the cytosol. Water wires are known as ubiquitous proton-transport devices in biological systems, thus supporting the notion that the C-terminal domain serves as a conduit for proton release. Additional simulations showed that the release of a single proton from the transport sites induces bending of transmembrane helix M5 and the interaction between residues Arg762 and Ser915. These structural changes create a physical barrier against full hydration of the pore and prevent the formation of hydrogen-bonded water wires once proton transport has occurred through this pore. Together, these findings support the notion that the C-terminal proton release pathway is a functional element of SERCA and also provide a mechanistic model for its operation in the catalytic cycle of the pump.  相似文献   
5.
6.
Inhibition of PSD-95 has emerged as a promising strategy for the treatment of ischemic stroke, as shown with peptide-based compounds that target the PDZ domains of PSD-95. In contrast, developing potent and drug-like small molecules against the PSD-95 PDZ domains has so far been unsuccessful. Here, we explore the druggability of the PSD-95 PDZ1-2 domain and use fragment screening to investigate if this protein is prone to binding small molecules. We screened 2500 fragments by fluorescence polarization (FP) and validated the hits by surface plasmon resonance (SPR), including an inhibition counter-test, and found four promising fragments. Three ligand efficient fragments were shown by 1H,15N HSQC NMR to bind in the small hydrophobic P0 pockets of PDZ1-2, and one of them underwent structure-activity relationship (SAR) studies. Overall, we demonstrate that fragment screening can successfully be applied to PDZ1-2 of PSD-95 and disclose novel fragments that can serve as starting points for optimization towards small-molecule PDZ domain inhibitors.  相似文献   
7.
8.
An improved glucose-chelator-albumin bioconjugate (GluCAB) derivative, GluCAB-2Mal, has been synthesized and studied for in vivo 64Cu-PET/CT imaging in breast cancer mice models together with its first-generation analogue GluCAB-1Mal. The radioligand works on the principle of tumor targeting through the enhanced permeability and retention (EPR) effect with a supportive role played by glucose metabolism. [64Cu]Cu-GluCAB-2Mal (99 % RCP) exhibited high serum stability with immediate binding to serum proteins. In vivo experiments for comparison between tumor targeting of [64Cu]Cu-GluCAB-2Mal and previous-generation [64Cu]Cu-GluCAB-1Mal encompassed microPET/CT imaging and biodistribution analysis in an allograft E0771 breast cancer mouse model. Tumor uptake of [64Cu]Cu-GluCAB-2Mal was clearly evident with twice as much accumulation as compared to its predecessor and a tumor/muscle ratio of up to 5 after 24 h. Further comparison indicated a decrease in liver accumulation for [64Cu]Cu-Glu-CAB-2Mal.  相似文献   
9.
The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.  相似文献   
10.
Microtomography (μCT) and nuclear magnetic resonance (NMR) have been used to characterize porous media for decades. Magnetic resonance imaging (MRI) enables direct visualization of pore architecture and many pulse sequences exist. In this work, we tested the MRI pulse sequence Zero Echo Time (ZTE) to study sandstone and carbonate for its ability to address short relaxation times. We aimed at resolving two fluid conduit scales, that is, pores and fractures. In this research, we study tighter porous systems than those previously reported using ZTE. Additionally, pore cluster analysis (PCA), combined with ZTE, can be used to analyze pore-fracture connectivity of relatively large core plugs. We show that ZTE can resolve two-scale pore systems simultaneously, that is, fractures and pores. By combining time-domain NMR pore-size analysis and PCA, we show that careful selection of resolution is necessary to understand transport in porous media.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号